Vlaanderen
Klasse.be

Zo doen zij het

Big data voorspellen wie zorgleerling wordt

  • 4 oktober 2021
  • 6 minuten lezen

Klopt ons studieadvies? Zijn onze leerlingen minder sterk in Frans dan in omliggende scholen? Het Atlascollege in Genk maakt school op basis van big data. Kunnen big data in onderwijs zelfs voorspellen welke leerlingen meer ondersteuning nodig hebben?

Vanop de bovenste verdieping zie je de schaalgrootte van het Atlascollege: een campus van 10 voetbalvelden met 3200 leerlingen, 600 leraren en 13 directeurs. En met een berg data in hun digitaal schoolplatform. Hoe duw je leerlingen en leraren vooruit door in die big data antwoorden te zoeken en te voorspellen? En hoe voorkom je een kil datagedreven onderwijs?


1. Duik in big data in onderwijs

Christel Schepers, algemeen directeur: “We gaan simpelweg op zoek naar antwoorden op vragen. Zo vroegen we ons af of we juist studieadvies geven. We ontdekten dat ons advies goedbedoeld is, maar weinig effect had op de attesten. Leerlingen die tegen het advies ingingen, behaalden even goede of betere resultaten dan leerlingen die het advies wel volgden.”

“We gaven ook te algemeen advies: ‘neem contact op met het CLB’, ‘denk eens na over een studiekeuze die dichter bij je interesses ligt’. Op basis van de data uit Smartschool hebben we onze aanpak bijgestuurd en merken nu een betere match tussen advies en attest. In de toekomst willen heel graag onderzoeken of onze leerlingen het juiste studieadvies krijgen voor hoger onderwijs en of ze sterke slaagpercentages halen.”

Ronny Vrijsen, directeur Economie en Organisatie: “We onderzochten ook welke overgangen tussen studierichtingen succesvol zijn. De switch van zesde jaar kantoor naar een zevende jaar kinderverzorging of omgekeerd bleek dramatisch. Dat kan een leraar met een gezond buikgevoel misschien ook aanvoelen, maar die voelsprieten kloppen niet altijd. Zo leefde bij een groep leraren het gevoel dat onze leerlingen van de eerste graad minder goed voorbereid waren op Frans in de tweede graad dan andere scholen. Dat bleek totaal niet te kloppen. En in januari of maart nog starten in een nieuwe studierichting, geeft tegen de verwachtingen in ook nog een reële slaagkans.”

Ouders en leerlingen een grafiek
laten zien, heeft effect

“Na een jaar corona keken we welke soort leerlingen in de gevarenzone zitten. Van de groep die 50 à 55 % scoorde op het kerstrapport, was maar 46 % geslaagd op het einde van het jaar. Vanaf 60 % was de kans op een A-attest heel groot. We linkten ook het opleidingsniveau van de moeder aan het attest in de coronaperiode en zagen zo een verschil van 30 % slaagkans. Zo wisten we welke leerlingen extra ondersteuning, bijlessen Frans en wiskunde konden gebruiken. Door terug te blikken in de data kunnen we ook beter voorspellen welke soort leerlingen sneller in de gevarenzone komen.”


2. Data doen samenwerken

Christel Schepers: “Waar de school stopt, start de wijkwerking. We werken goed samen met de stad Genk. Als wij weten welke leerlingen minder scoren, weten wijkwerkers in welke wijken extra huisbezoeken nodig zijn. Uiteraard geven we geen namen door van leerlingen, maar ze hebben vaak al genoeg info met de wijken. De Opvoedingswinkel vraagt zelfs actief aan ons welke zones extra aandacht verdienen. Voor een ondersteuningsproject voor mama’s kunnen we op basis van data gericht kijken en de noden in kaart brengen. Data leggen een probleem bloot, maar natuurlijk vertellen ze niks over de achterliggende oorzaken.”


3. Effect op leerlingen en ouders

Ronny Vrijsen: “We zien in onze data een verband tussen onwettige afwezigheden en attesten. Een grafiek voor ouders en leerlingen dat x aantal afwezigheden je A-attest in gevaar brengen, heeft effect. Data maken communicatie gemakkelijker en werken verbindend. De analyticstool van Smartschool gaat gemakkelijk open tijdens een oudercontact of gesprek met een leerling.”

“In de klas laten we ook een geanonimiseerde grafiek zien met hoeveel procent van de klasgroep kans maakt op welk attest. Dat heeft effect op de studiemotivatie. Het jaarrapport staat ook open voor leerlingen. Gemiddeld nog maar 45 %? Tandje bijsteken, beseffen ze dan.”

e-book: onderwijsinnovatie open (cover) op tablet

E-book ‘Onderwijsinnovatie’

Je school is een bord spaghetti: trek aan 1 sliert en alles komt in beweging! Lees 6 inzichten die goesting geven, doorspekt met verhalen van schoolteams over ups en downs bij verandering. 

Download gratis het e‑book

4. Voordelen van big data

Christel Schepers: “Vroeger hadden we dagen of weken nodig voor dingen die we nu in 1 klik tevoorschijn toveren. We gebruiken Dataloep, maar in de analytics van Smartschool hebben we een sneller zicht op eigen data. We kunnen sterk inzoomen op studierichting, graad, klas, zelfs tot op leerlingenniveau.”

We weten welke maatregelen
effect hebben

“Zonder data kan je gewoonweg geen goed beleid voeren en vaar je blind of met 1 oog. Door data weten we welke maatregelen effect hebben. Dat motiveert, geeft focus en rust. Data zijn een onderdeel van een onderwijsleergesprek en maken professionalisering behapbaar. Leraren moeten heel algemeen ‘meer innoveren’ of ‘meer handelingsgericht werken’, maar waar begin je concreet?”


5. Geen cursus statistiek nodig

Christel Schepers: “We kozen ervoor om onze 600 leraren niet op te leiden om zelf data uit Smartschool te halen. We willen hen niet overdonderen met een berg data en vakjargon: wanneer merk je een significant verschil of wat is het onderscheid tussen correlatie en oorzakelijk verband. Collega’s binnen elke vakgroep krijgen gewoon elk trimester een toegankelijk overzicht met een beetje uitleg. We starten dit schooljaar met een werkgroep die uitvlooit op welke onderzoeksvragen we focussen. In de analytics van Smartschool zitten sowieso een 50-tal standaardvragen om van te vertrekken.”

Ik laat data geen directeur
spelen

“Als grote school kunnen we een leraar wiskunde aanwerven die naast zijn lesopdracht ook met data bezig is. Maar elke school, groot of klein, moet vooral haar eigen onderzoeksvragen stellen. En een leraar wiskunde kan met zijn of haar cijferkennis collega’s ondersteunen.”


6. Data beslissen niet

Christel Schepers: “Natuurlijk mag je de data niet laten beslissen wat een leerling wel of niet mag studeren. In sommige landen gebeurt dat, maar die richting willen we zeker niet uit. Trouwens, als een algoritme mag beslissen, zit daar nog altijd een beleidsbeslissing van mensen achter. Dus uiteindelijk zitten mensen nog altijd achter het stuur. Ik ga in ieder geval onze data geen directeur laten spelen.”

Ronny Vrijsen: “We gebruiken data zeker niet als controlemiddel. In een functioneringsgesprek kijken we niet hoeveel evaluaties een leraar doet of hoe een klas scoort in vergelijking met parallelcollega’s. Data dienen vooral als ondersteuning en reflectie-instrument om het beter te doen. Als je voor de inspectie jezelf moet beoordelen op 7 ontwikkelingsschalen, kan je daarvoor even in je eigen data duiken. In de data van een collega spieken? Dat laten we niet toe, maar een vakgroep kan wel op basis van geanonimiseerde data het gesprek aangaan als ze verschil opmerken in aanpak. Leggen we de lat ongeveer even hoog?”

Sara Frederix

Voeg dit artikel toe aan je bewaarde artikels

Log in om te bewaren


V

Vanbuel Janne

15 oktober 2021

Ik vind dat de school er goed voor zorgt dat leerlingen goede punten moeten halen.

Reageren

Laat een reactie achter